Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Laryngoscope ; 134(3): 1457-1463, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37589298

RESUMO

OBJECTIVE: Determine whether combination therapy with ganciclovir (GCV) and a Quercetin-P188 solution improves hearing outcomes in a murine cytomegalovirus (CMV) model. METHODS: BALB/c mice were infected with murine CMV on postnatal day 3 (p3). Quercetin was solubilized in saline using P188 (QP188). Treatment groups received either GCV, QP188, GCV and QP188, or P188 delivery vehicle BID at 12-hour intervals via intraperitoneal injection. All treatment groups were treated for 14 days starting at p3. Uninfected controls were treated with the combined regimen, saline or P188 delivery vehicle. Auditory thresholds were assessed using distortion product otoacoustic emission (DPOAE) and auditory brainstem response (ABR) testing at 4, 6, and 8 weeks of age. Temporal bones from separate CMV-infected groups were harvested at p10, and viral load was determined by quantitative polymerase chain reaction. RESULTS: CMV-infected mice receiving combination therapy GCV+QP188 demonstrated statistically significant lower ABR (p < 0.001) and DPOAE thresholds (p < 0.001) compared with mice treated with GCV monotherapy, QP188 monotherapy, and P188 delivery vehicle at 4, 6, and 8 weeks of age. GCV+QP188 combination therapy, GCV monotherapy, and QP188 monotherapy resulted in a nonsignificant reduction in mean viral titers compared to P188 monotherapy (p = 0.08). CONCLUSION: Combining GCV with the excipients quercetin and P188 effectively ameliorated CMV-induced sensorineural hearing loss in a murine model. This result may be partially explained by a reduction in viral titers in mouse temporal bones that correlate with in vitro studies demonstrating additive antiviral effect in cell culture. LEVEL OF EVIDENCE: NA Laryngoscope, 134:1457-1463, 2024.


Assuntos
Infecções por Citomegalovirus , Surdez , Perda Auditiva , Animais , Camundongos , Ganciclovir/farmacologia , Ganciclovir/uso terapêutico , Citomegalovirus , Quercetina/farmacologia , Quercetina/uso terapêutico , Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/tratamento farmacológico , Perda Auditiva/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico
2.
Mol Vis ; 29: 87-101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859808

RESUMO

Purpose: The retinal pigment epithelium (RPE) is an important tissue for maintaining a healthy retina. Retinal pigment epithelial cells help regulate nutrient transport to photoreceptors and are heavily pigmented to prevent light scattering. These cells also have junction proteins to form monolayers. Monolayers are key players in pathologies such as age-related macular degeneration (AMD), a leading cause of vision loss in older adults. During AMD, RPE cell detachment can occur, resulting in a loss of junctions. Losing junctions can increase the expression of pro-angiogenic vascular endothelial growth factor (VEGF). This overexpression can cause abnormal blood vessel growth or angiogenesis in the retina. Age-related macular degeneration treatments target VEGF to slow angiogenesis progression. However, other proteins, such as angiopoietin-2 (Ang-2) and the tissue inhibitor of metalloproteinase-1 (TIMP-1), may also play important roles, making them potential targets for treatment. Controlling RPE junction formation will help elucidate the relationship between RPE cell detachment and additional angiogenic factor secretion, lead to more therapeutics, and increase the efficacy of current treatments. Methods: Micropatterning was used to control the spatial arrangement of primary porcine RPE cells using polydimethylsiloxane (PDMS) stencils. Patterns were formed into PDMS stencils to mimic 10%, 25%, and 50% overall detachment of the RPE monolayer. Zonula-occludens-1 (ZO-1), Ang-2, and VEGF were visualized using immunocytochemical (ICC) staining. An enzyme-linked immunosorbent assay (ELISA) was used to quantify extracellular Ang-2, VEGF, TIMP-1, and TIMP-2 levels. A rod outer segment (OS) phagocytosis assay was performed to determine how RPE junction loss directly affects photoreceptor support. Results: The growth of primary porcine RPE cells was successfully controlled using stencils. Morphological changes and a decrease in pigmentation were observed, showing a decline in barrier and light absorption functions as degeneration increased. One day after stencil removal, junction proteins were delocalized, and angiogenic factor secretions were correlated with increased levels of detachment. Secretion levels of Ang-2 and TIMP-1 were significantly increased, whereas VEGF and TIMP-2 concentrations were not as affected by varying levels of detachment. OS phagocytosis appeared lower in RPE cells when ZO-1 was affected. Conclusions: These results suggest a correlation between loss of junctions, abnormal angiogenic protein secretion, and reduced OS phagocytosis. Furthermore, Ang-2 and TIMP-1 proteins might be beneficial targets for AMD treatments, and their roles in retinal diseases deserve further investigation.


Assuntos
Degeneração Macular , Fator A de Crescimento do Endotélio Vascular , Animais , Suínos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Angiopoietina-2/metabolismo , Indutores da Angiogênese/metabolismo , Degeneração Macular/patologia , Junções Íntimas/metabolismo , Epitélio Pigmentado da Retina/metabolismo
3.
ACS Biomater Sci Eng ; 9(8): 5051-5061, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37458693

RESUMO

Bruch's membrane resides in the subretinal tissue and regulates the flow of nutrients and waste between the retinal pigment epithelial (RPE) and vascular layers of the eye. With age, Bruch's membrane becomes thicker, stiffer, and less permeable, which impedes its function as a boundary layer in the subretina. These changes contribute to pathologies such as age-related macular degeneration (AMD). To better understand how aging in Bruch's membrane affects surrounding tissues and to determine the relationship between aging and disease, an in vitro model of Bruch's membrane is needed. An accurate model of Bruch's membrane must be a proteinaceous, semipermeable, and nonporous biomaterial with similar mechanical properties to in vivo conditions. Additionally, this model must support RPE cell growth. While models of subretinal tissue exist, they typically differ from in vivo Bruch's membrane in one or more of these properties. This study evaluates the capability of membranes created from recombinant hagfish intermediate filament (rHIF) proteins to accurately replicate Bruch's membrane in an in vitro model of the subretinal tissue. The physical characteristics of these rHIF membranes were evaluated using mechanical testing, permeability assays, brightfield microscopy, and scanning electron microscopy. The capacity of the membranes to support RPE cell culture was determined using brightfield and fluorescent microscopy, as well as immunocytochemical staining. This study demonstrates that rHIF protein membranes are an appropriate biomaterial to accurately mimic both healthy and aged Bruch's membrane for in vitro modeling of the subretinal tissue.


Assuntos
Lâmina Basilar da Corioide , Feiticeiras (Peixe) , Animais , Lâmina Basilar da Corioide/metabolismo , Lâmina Basilar da Corioide/patologia , Proteínas de Filamentos Intermediários/metabolismo , Biomimética , Epitélio Pigmentado Ocular/metabolismo , Epitélio Pigmentado Ocular/patologia , Materiais Biocompatíveis
4.
Antiviral Res ; 204: 105362, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35709898

RESUMO

Treatment of human cytomegalovirus (CMV) infection requires long-term administration of nucleoside analog antivirals such as ganciclovir (GCV), a therapy frequently limited by GCV-induced toxicity. Here, combining GCV treatment with two bioactive excipients, poloxamer 188 and quercetin, was investigated in vitro to reduce GCV dosage. Quercetin is a natural flavonoid exhibiting antiviral activity against CMV by a mechanism distinct from GCV, but is poorly soluble, limiting its use as a therapeutic. To overcome this challenge, quercetin was co-formulated with poloxamer 188 (P188, Pluronic ® F68). Quercetin-P188 (QP188) formulations yielded only modest CMV viral inhibition, with a selectivity index of 11.4, contrasted with a GCV selectivity index of 95. More significantly, when coadministered with GCV, QP188 exhibited an additive or synergistic interaction in subtherapeutic ranges of GCV. Fluorescence microscopy revealed QP188 accumulation in fibroblast mitochondria, suggesting that the excipient may modulate mitochondrial processes relevant to CMV infection. GCV antiviral therapy augmented with poloxamer-solubilized quercetin may be a viable approach to maintain CMV inhibition while lowering GCV doses, translating to reduced associated toxicity.


Assuntos
Infecções por Citomegalovirus , Infecções por Herpesviridae , Antivirais/uso terapêutico , Citomegalovirus , Infecções por Citomegalovirus/tratamento farmacológico , Ganciclovir/uso terapêutico , Infecções por Herpesviridae/tratamento farmacológico , Humanos , Poloxâmero/uso terapêutico , Quercetina/farmacologia
5.
ACS Biomater Sci Eng ; 6(12): 6853-6863, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33320626

RESUMO

To mimic skeletal muscle tissues in vitro, native and transgenic spider silk/silkworm silks were seeded with C2C12 myoblasts to observe if these three-dimensional substrates are preferable to a traditional two-dimensional polystyrene cell culture surface. Silks were wound around an acrylic chassis to produce a novel, three-dimensional cell culture device with suspended muscle fibers that genetically and morphologically resemble native skeletal muscle tissue. The transgenic spider silk/silkworm silk has never before been studied for this application. Genetic expression verified skeletal muscle lineage and differentiation, while fluorescent imaging verified contractile protein synthesis. Genetic analysis also revealed an increase in expression of the Myh2 contractile protein gene on silkworm silks, particularly on the transgenic silk. Mechanical properties and protein secondary structure content of the silks indicated correlation between substrate properties and Myh2 gene expression. This increase in contractile protein gene expression suggests that biologically derived silk substrates that are suspended may be a preferable substrate for in vitro muscle modeling because of the proteinaceous character and mechanical flexibility of the silk.


Assuntos
Músculo Esquelético/crescimento & desenvolvimento , Seda , Tecidos Suporte , Animais , Animais Geneticamente Modificados , Bombyx/genética , Diferenciação Celular , Linhagem Celular , Camundongos
6.
Sci Rep ; 10(1): 21289, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277560

RESUMO

Outer membrane vesicles (OMVs) produced by Gram-negative bacteria have roles in cell-to-cell signaling, biofilm formation, and stress responses. Here, the effects of abiotic stressors on OMV contents and composition from biofilm cells of the plant health-promoting bacterium Pseudomonas chlororaphis O6 (PcO6) are examined. Two stressors relevant to this root-colonizing bacterium were examined: CuO nanoparticles (NPs)-a potential fertilizer and fungicide- and H2O2-released from roots during plant stress responses. Atomic force microscopy revealed 40-300 nm diameter OMVs from control and stressed biofilm cells. Raman spectroscopy with linear discriminant analysis (LDA) was used to identify changes in chemical profiles of PcO6 cells and resultant OMVs according to the cellular stressor with 84.7% and 83.3% accuracies, respectively. All OMVs had higher relative concentrations of proteins, lipids, and nucleic acids than PcO6 cells. The nucleic acid concentration in OMVs exhibited a cellular stressor-dependent increase: CuO NP-induced OMVs > H2O2-induced OMVs > control OMVs. Biochemical assays confirmed the presence of lipopolysaccharides, nucleic acids, and protein in OMVs; however, these assays did not discriminate OMV composition according to the cellular stressor. These results demonstrate the sensitivity of Raman spectroscopy using LDA to characterize and distinguish cellular stress effects on OMVs composition and contents.


Assuntos
Membrana Externa Bacteriana/metabolismo , Vesículas Extracelulares/metabolismo , Pseudomonas chlororaphis/metabolismo , Estresse Fisiológico , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/ultraestrutura , Vesículas Extracelulares/química , Vesículas Extracelulares/ultraestrutura , Pseudomonas chlororaphis/química , Pseudomonas chlororaphis/ultraestrutura , Análise Espectral Raman
7.
J Biol Eng ; 14: 13, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32355505

RESUMO

BACKGROUND: Choroidal neovascularization (CNV) is a major cause of blindness in patients with age-related macular degeneration. CNV is characterized by new blood vessel growth and subretinal fluid accumulation, which results in mechanical pressure on retinal pigment epithelial (RPE) cells. The overexpression of RPE-derived angiogenic factors plays an important role in inducing CNV. In this work, we investigated the effect of mechanical stress on the expression of angiogenic factors in porcine RPE cells and determined the impact of conditioned medium on in-vitro angiogenesis. RESULTS: The goal of this study was to determine whether low levels of acute mechanical stress during early CNV can induce the expression of angiogenic factors in RPE cells and accelerate angiogenesis. Using a novel device, acute mechanical stress was applied to primary porcine RPE cells and the resulting changes in the expression of major angiogenic factors, VEGF, ANG2, HIF-1α, IL6, IL8 and TNF-α, were examined using immunocytochemistry, qRT-PCR, and ELISA. An in vitro tube formation assay was used to determine the effect of secreted angiogenic proteins due to mechanical stress on endothelial tube formation by human umbilical vein endothelial cells (HUVECs). Our results showed an increase in the expression of VEGF, ANG2, IL-6 and IL-8 in response to mechanical stress, resulting in increased in vitro angiogenesis. Abnormal epithelial-mesenchymal transition (EMT) in RPE cells is also associated with CNV and further retinal degeneration. Our qRT-PCR results verified an increase in the expression of EMT genes, CDH2, VIM and FN1, in RPE cells. CONCLUSIONS: In conclusion, we showed that acute mechanical stress induces the expression of major angiogenic and EMT factors and promotes in vitro angiogenesis, suggesting that mechanical stress plays a role in promoting aberrant angiogenesis in AMD.

8.
J Biophotonics ; 12(11): e201900150, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31291064

RESUMO

When developing a Raman spectral library to identify bacteria, differences between laboratory and real world conditions must be considered. For example, culturing bacteria in laboratory settings is performed under conditions for ideal bacteria growth. In contrast, culture conditions in the human body may differ and may not support optimized bacterial growth. To address these differences, researchers have studied the effect of conditions such as growth media and phase on Raman spectra. However, the majority of these studies focused on Gram-positive or Gram-negative bacteria. This article focuses on the influence of growth media and phase on Raman spectra and discrimination of mycobacteria, an acid-fast genus. Results showed that spectral differences from growth phase and media can be distinguished by spectral observation and multivariate analysis. Results were comparable to those found for other types of bacteria, such as Gram-positive and Gram-negative. In addition, the influence of growth phase and media had a significant impact on machine learning models and their resulting classification accuracy. This study highlights the need for machine learning models and their associated spectral libraries to account for various growth parameters and stages to further the transition of Raman spectral analysis of bacteria from laboratory to clinical settings.


Assuntos
Mycobacterium/crescimento & desenvolvimento , Mycobacterium/isolamento & purificação , Análise Espectral Raman , Aprendizado de Máquina
9.
Electrophoresis ; 40(10): 1446-1456, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30892709

RESUMO

The traditional bacterial identification method of growing colonies on agar plates can take several days to weeks to complete depending on the growth rate of the bacteria. Successfully decreasing this analysis time requires cell isolation followed by identification. One way to decrease analysis time is by combining dielectrophoresis (DEP), a common technique used for cell sorting and isolation, and Raman spectroscopy for cell identification. DEP-Raman devices have been used for bacterial analysis, however, these devices have a number of drawbacks including sample heating, cell-to-electrode proximity that limits throughput and separation efficiency, electrode fouling, or inability to address sample debris. Presented here is a contactless DEP-Raman device to simultaneously isolate and identify particles from a mixed sample while avoiding common drawbacks associated with other DEP designs. Using the device, a mixed sample of bacteria and 3 µm polystyrene spheres were isolated from each other and a Raman spectrum of the trapped bacteria was acquired, indicating the potential for cDEP-Raman devices to decrease the analysis time of bacteria.


Assuntos
Eletroforese/instrumentação , Mycobacterium/isolamento & purificação , Análise Espectral Raman/instrumentação , Condutividade Elétrica , Eletrodos , Eletroforese/métodos , Desenho de Equipamento , Humanos , Mycobacterium/química , Mycobacterium/classificação , Poliestirenos , Processamento de Sinais Assistido por Computador , Análise Espectral Raman/métodos
10.
Biomed Res Int ; 2019: 2042808, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906768

RESUMO

Muscular atrophy, defined as the loss of muscle tissue, is a serious issue for immobilized patients on Earth and for humans during spaceflight, where microgravity prevents normal muscle loading. In vitro modeling is an important step in understanding atrophy mechanisms and testing countermeasures before animal trials. The most ideal environment for modeling must be empirically determined to best mimic known responses in vivo. To simulate microgravity conditions, murine C2C12 myoblasts were cultured in a rotary cell culture system (RCCS). Alginate encapsulation was compared against polystyrene microcarrier beads as a substrate for culturing these adherent muscle cells. Changes after culture under simulated microgravity were characterized by assessing mRNA expression of MuRF1, MAFbx, Caspase 3, Akt2, mTOR, Ankrd1, and Foxo3. Protein concentration of myosin heavy chain 4 (Myh4) was used as a differentiation marker. Cell morphology and substrate structure were evaluated with brightfield and fluorescent imaging. Differentiated C2C12 cells encapsulated in alginate had a significant increase in MuRF1 only following simulated microgravity culture and were morphologically dissimilar to normal cultured muscle tissue. On the other hand, C2C12 cells cultured on polystyrene microcarriers had significantly increased expression of MuRF1, Caspase 3, and Foxo3 and easily identifiable multinucleated myotubes. The extent of differentiation was higher in simulated microgravity and protein synthesis more active with increased Myh4, Akt2, and mTOR. The in vitro microcarrier model described herein significantly increases expression of several of the same atrophy markers as in vivo models. However, unlike animal models, MAFbx and Ankrd1 were not significantly increased and the fold change in MuRF1 and Foxo3 was lower than expected. Using a standard commercially available RCCS, the substrates and culture methods described only partially model changes in mRNAs associated with atrophy in vivo.


Assuntos
Regulação da Expressão Gênica , Proteínas Musculares/biossíntese , Atrofia Muscular/metabolismo , Mioblastos Esqueléticos/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Humanos , Camundongos , Atrofia Muscular/patologia , Mioblastos Esqueléticos/patologia
11.
ACS Biomater Sci Eng ; 5(8): 4023-4036, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-33448804

RESUMO

Spider silks are intriguing biomaterials that have a high potential as innovative biomedical processes and devices. The intent of this study was to evaluate the capacity of recombinant spider silk proteins (rSSps) as a synthetic Bruch's membrane. Nonporous silk membranes were prepared with comparable thicknesses (<10 µm) to that of native Bruch's membrane. Biomechanical characterization was performed prior to seeding cells. The ability of RPE cells (ARPE-19) to attach and grow on the membranes was then evaluated with bright-field and electron microscopy, intracellular DNA quantification, and immunocytochemical staining (ZO-1 and F-actin). Controls were cultured on permeable Transwell support membranes and characterized with the same methods. A size-dependent permeability assay, using FITC-dextran, was used to determine cell-membrane barrier function. Compared to Transwell controls, RPE cells cultured on rSSps membranes developed more native-like "cobblestone" morphologies, exhibited higher intracellular DNA content, and expressed key organizational proteins more consistently. Comparisons of the membranes to native structures revealed that the silk membranes exhibited equivalent thicknesses, biomechanical properties, and barrier functions. These findings support the use of recombinant spider silk proteins to model Bruch's membrane and develop more biomimetic retinal models.

12.
Lab Chip ; 18(22): 3413-3424, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30328441

RESUMO

Choroidal neovascularization (CNV) is a major cause of blindness in patients with age-related macular degeneration (AMD). Overexpression of vascular endothelial growth factor (VEGF), a potent angiogenic protein, by retinal pigment epithelial (RPE) cells is a key stimulator of CNV. Mechanical stress occurs during different stages of AMD and is a possible inducer of VEGF expression in RPE cells. However, robust and realistic approaches to studying acute and chronic mechanical stress under various AMD stages do not exist. The majority of previous work has studied cyclic stretching of RPE cells grown on flexible substrates, but an ideal model must be able to mimic localized and continuous stretching of the RPE as would occur in AMD in vivo. To bridge this gap, we developed two in vitro devices to model chronic and acute mechanical stress on RPE cells during different stages of AMD. In one device, high levels of continuous mechanical stress were applied to focal regions of the RPE monolayer by stretching the underlying silicon substrate to study the role of chronic mechanical stimulation. In the second device, RPE cells were grown on porous plastic substrates and acute stress was studied by stretching small areas. Using these devices, we studied the effect of mechanical stress on VEGF expression in RPE cells. Our results suggest that mechanical stress in RPE cells induces VEGF expression and promotes in vitro angiogenesis. These results confirm the hypothesis that mechanical stress is involved in the initiation and progression of CNV.


Assuntos
Técnicas de Cultura de Células/instrumentação , Epitélio Pigmentado da Retina/citologia , Estresse Mecânico , Linhagem Celular , Proliferação de Células , Humanos , Degeneração Macular/patologia , Membranas Artificiais , Porosidade , Epitélio Pigmentado da Retina/patologia
13.
Am J Obstet Gynecol ; 218(5): 528.e1-528.e18, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29410109

RESUMO

BACKGROUND: The cervix must undergo significant biochemical remodeling to allow for successful parturition. This process is not fully understood, especially in instances of spontaneous preterm birth. In vivo Raman spectroscopy is an optical technique that can be used to investigate the biochemical composition of tissue longitudinally and noninvasively in human beings, and has been utilized to measure physiology and disease states in a variety of medical applications. OBJECTIVE: The purpose of this study is to measure in vivo Raman spectra of the cervix throughout pregnancy in women, and to identify biochemical markers that change with the preparation for delivery and postpartum repair. STUDY DESIGN: In all, 68 healthy pregnant women were recruited. Raman spectra were measured from the cervix of each patient monthly in the first and second trimesters, weekly in the third trimester, and at the 6-week postpartum visit. Raman spectra were measured using an in vivo Raman system with an optical fiber probe to excite the tissue with 785 nm light. A spectral model was developed to highlight spectral regions that undergo the most changes throughout pregnancy, which were subsequently used for identifying Raman peaks for further analysis. These peaks were analyzed longitudinally to determine if they underwent significant changes over the course of pregnancy (P < .05). Finally, 6 individual components that comprise key biochemical constituents of the human cervix were measured to extract their contributions in spectral changes throughout pregnancy using a linear combination method. Patient factors including body mass index and parity were included as variables in these analyses. RESULTS: Raman peaks indicative of extracellular matrix proteins (1248 and 1254 cm-1) significantly decreased (P < .05), while peaks corresponding to blood (1233 and 1563 cm-1) significantly increased (P < .0005) in a linear manner throughout pregnancy. In the postpartum cervix, significant increases in peaks corresponding to actin (1003, 1339, and 1657 cm-1) and cholesterol (1447 cm-1) were observed when compared to late gestation, while signatures from blood significantly decreased. Postpartum actin signals were significantly higher than early pregnancy, whereas extracellular matrix proteins and water signals were significantly lower than early weeks of gestation. Parity had a significant effect on blood and extracellular matrix protein signals, with nulliparous patients having significant increases in blood signals throughout pregnancy, and higher extracellular matrix protein signals in early pregnancy compared to patients with prior pregnancies. Body mass index significantly affected actin signal contribution, with low body mass index patients showing decreasing actin contribution throughout pregnancy and high body mass index patients demonstrating increasing actin signals. CONCLUSION: Raman spectroscopy was successfully used to biochemically monitor cervical remodeling in pregnant women during prenatal visits. This foundational study has demonstrated sensitivity to known biochemical dynamics that occur during cervical remodeling, and identified patient variables that have significant effects on Raman spectra throughout pregnancy. Raman spectroscopy has the potential to improve our understanding of cervical maturation, and be used as a noninvasive preterm birth risk assessment tool to reduce the incidence, morbidity, and mortality caused by preterm birth.


Assuntos
Colo do Útero/fisiologia , Parto/fisiologia , Primeiro Trimestre da Gravidez/fisiologia , Segundo Trimestre da Gravidez/fisiologia , Terceiro Trimestre da Gravidez/fisiologia , Análise Espectral Raman , Adulto , Feminino , Voluntários Saudáveis , Humanos , Período Pós-Parto , Gravidez
14.
Mol Vis ; 23: 431-446, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28761317

RESUMO

PURPOSE: To investigate the role of RPE cell-cell contact in vascular endothelial growth factor (VEGF) protein expression in cultures of primary human RPE (hRPE) cells and a human RPE cell line (ARPE-19). METHODS: Two in vitro methods, scratching and micropatterning, were used to control the physical dissociation of RPE cell-cell junctions. Scratching was performed by scoring monolayers of RPE cells with a cell scraper. Micropatterning was achieved by using a stencil patterning method. Extracellular VEGF expression was assessed by using an enzyme-linked immunosorbent assay (ELISA) kit. Immunocytochemistry (ICC) was performed to visualize the expression and localization of VEGF and intercellular proteins zonula occludens-1 (ZO-1), N-cadherin, ß-catenin, and claudin-1 in RPE cultures. RESULTS: Higher expression of VEGF protein by cells on the edges of the scratched RPE layers was confirmed with ICC in short-term (1 day after confluency) and long-term (4 weeks after confluency) cultures. According to the ICC results, ZO-1, N-cadherin, ß-catenin, and claudin-1 successfully localized to cell-cell junctions in long-term cultures of ARPE-19 and hRPE cells. However, unlike N-cadherin, ß-catenin, and claudin-1, only ZO-1 localized junctionally in short-term cultures of both cell types. Moreover, removing cell-cell junctions by scratching resulted in the delocalization of ZO-1 from tight junctions to the cytoplasm. The loss of tight junction formation and the accumulation of ZO-1 in the cytoplasm correlated with increased VEGF expression. Micropatterning RPE cells on different sized circular patterns produced varying concentrations of cells with lost cell-cell junctions. When fewer cells formed intercellular junctions, increased extracellular VEGF secretion was observed from the ARPE-19 and hRPE cells. CONCLUSIONS: VEGF expression increases after physical disruption of RPE cell-cell connections. This increase in VEGF expression correlates with the loss of intercellular junctions and the localization of ZO-1 in the cytoplasm of RPE cells.


Assuntos
Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Junções Intercelulares/metabolismo , Epitélio Pigmentado da Retina/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Linhagem Celular , Claudina-1/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Masculino , Junções Íntimas/metabolismo , Adulto Jovem , Proteína da Zônula de Oclusão-1/metabolismo , beta Catenina/metabolismo
15.
J Biol Eng ; 11: 26, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28775765

RESUMO

BACKGROUND: The configuration of necrotic areas within the retinal pigmented epithelium is an important element in the progression of age-related macular degeneration (AMD). In the exudative (wet) and non-exudative (dry) forms of the disease, retinal pigment epithelial (RPE) cells respond to adjacent atrophied regions by secreting vascular endothelial growth factor (VEGF) that in turn recruits new blood vessels which lead to a further reduction in retinal function and vision. In vitro models exist for studying VEGF expression in wet AMD (Vargis et al., Biomaterials 35(13):3999-4004, 2014), but are limited in the patterns of necrotic and intact RPE epithelium they can produce and in their ability to finely resolve VEGF expression dynamics. RESULTS: In this work, an in silico hybrid agent-based model was developed and validated using the results of this cell culture model of VEGF expression in AMD. The computational model was used to extend the cell culture investigation to explore the dynamics of VEGF expression in different sized patches of RPE cells and the role of negative feedback in VEGF expression. Results of the simulation and the cell culture studies were in excellent qualitative agreement, and close quantitative agreement. CONCLUSIONS: The model indicated that the configuration of necrotic and RPE cell-containing regions have a major impact on VEGF expression dynamics and made precise predictions of VEGF expression dynamics by groups of RPE cells of various sizes and configurations. Coupled with biological studies, this model may give insights into key molecular mechanisms of AMD progression and open routes to more effective treatments.

16.
Artigo em Inglês | MEDLINE | ID: mdl-28503548

RESUMO

The productivity of bioengineered cell factories is limited by inefficiencies in nutrient delivery and waste and product removal. Current solution approaches explore changes in the physical configurations of the bioreactors. This work investigates the possibilities of exploiting self-organizing vascular networks to support producer cells within the factory. A computational model simulates de novo vascular development of endothelial-like cells and the resultant network functioning to deliver nutrients and extract product and waste from the cell culture. Microbial factories with vascular networks are evaluated for their scalability, robustness, and productivity compared to the cell factories without a vascular network. Initial studies demonstrate that at least an order of magnitude increase in production is possible, the system can be scaled up, and the self-organization of an efficient vascular network is robust. The work suggests that bioengineered multicellularity may offer efficiency improvements difficult to achieve with physical engineering approaches.

17.
Sensors (Basel) ; 17(2)2017 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28208767

RESUMO

Dielectrophoresis (DEP) uses non-uniform electric fields to cause motion in particles due to the particles' intrinsic properties. As such, DEP is a well-suited label-free means for cell sorting. Of the various methods of implementing DEP, contactless dielectrophoresis (cDEP) is advantageous as it avoids common problems associated with DEP, such as electrode fouling and electrolysis. Unfortunately, cDEP devices can be difficult to fabricate, replicate, and reuse. In addition, the operating parameters are limited by the dielectric breakdown of polydimethylsiloxane (PDMS). This study presents an alternative way to fabricate a cDEP device allowing for higher operating voltages, improved replication, and the opportunity for analysis using Raman spectroscopy. In this device, channels were formed in fused silica rather than PDMS. The device successfully trapped 3.3 µm polystyrene spheres for analysis by Raman spectroscopy. The successful implementation indicates the potential to use cDEP to isolate and identify biological samples on a single device.

18.
Appl Spectrosc ; 71(6): 1249-1255, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27888200

RESUMO

Raman spectroscopy has been used for decades to detect and identify biological substances as it provides specific molecular information. Spectra collected from biological samples are often complex, requiring the aid of data truncation techniques such as principal component analysis (PCA) and multivariate classification methods. Classification results depend on the proper selection of principal components (PCs) and how PCA is performed (scaling and/or centering). There are also guidelines for choosing the optimal number of PCs such as a scree plot, Kaiser criterion, or cumulative percent variance. The goal of this research is to evaluate these methods for best implementation of PCA and PC selection to classify Raman spectra of bacteria. Raman spectra of three different isolates of mycobacteria ( Mycobacterium sp. JLS, Mycobacterium sp. KMS, Mycobacterium sp. MCS) were collected and then passed through PCA and linear discriminant analysis for classification. Principal component analysis implementation as well as PC selection was evaluated by comparing the highest possible classification accuracies against accuracies determined by PC selection methods for each centering and scaling option. Centered and unscaled data provided the best results when selecting PCs based on cumulative percent variance.


Assuntos
Mycobacterium/química , Mycobacterium/classificação , Análise de Componente Principal/métodos , Análise Espectral Raman/métodos , Análise Discriminante , Processamento de Imagem Assistida por Computador
19.
J Vis Exp ; (117)2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27911413

RESUMO

Immunoassays are used to detect proteins based on the presence of associated antibodies. Because of their extensive use in research and clinical settings, a large infrastructure of immunoassay instruments and materials can be found. For example, 96- and 384-well polystyrene plates are available commercially and have a standard design to accommodate ultraviolet-visible (UV-Vis) spectroscopy machines from various manufacturers. In addition, a wide variety of immunoglobulins, detection tags, and blocking agents for customized immunoassay designs such as enzyme-linked immunosorbent assays (ELISA) are available. Despite the existing infrastructure, standard ELISA kits do not meet all research needs, requiring individualized immunoassay development, which can be expensive and time-consuming. For example, ELISA kits have low multiplexing (detection of more than one analyte at a time) capabilities as they usually depend on fluorescence or colorimetric methods for detection. Colorimetric and fluorescent-based analyses have limited multiplexing capabilities due to broad spectral peaks. In contrast, Raman spectroscopy-based methods have a much greater capability for multiplexing due to narrow emission peaks. Another advantage of Raman spectroscopy is that Raman reporters experience significantly less photobleaching than fluorescent tags1. Despite the advantages that Raman reporters have over fluorescent and colorimetric tags, protocols to fabricate Raman-based immunoassays are limited. The purpose of this paper is to provide a protocol to prepare functionalized probes to use in conjunction with polystyrene plates for direct detection of analytes by UV-Vis analysis and Raman spectroscopy. This protocol will allow researchers to take a do-it-yourself approach for future multi-analyte detection while capitalizing on pre-established infrastructure.


Assuntos
Imunoensaio , Análise Espectral Raman , Colorimetria , Ensaio de Imunoadsorção Enzimática , Testes Imunológicos
20.
J Tissue Eng ; 7: 2041731416650838, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27493715

RESUMO

The retinal pigment epithelium is an important part of the vertebrate eye, particularly in studying the causes and possible treatment of age-related macular degeneration. The retinal pigment epithelium is difficult to access in vivo due to its location at the back of the eye, making experimentation with age-related macular degeneration treatments problematic. An alternative to in vivo experimentation is cultivating the retinal pigment epithelium in vitro, a practice that has been going on since the 1970s, providing a wide range of retinal pigment epithelial culture protocols, each producing cells and tissue of varying degrees of similarity to natural retinal pigment epithelium. The purpose of this review is to provide researchers with a ready list of retinal pigment epithelial protocols, their effects on cultured tissue, and their specific possible applications. Protocols using human and animal retinal pigment epithelium cells, derived from tissue or cell lines, are discussed, and recommendations for future researchers included.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...